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1 Introduction 
Financial economists achieved unprecedented success over the last thirty years using 

simple diffusion models to approximate the stochastic process for returns on financial 

assets. The so-called volatility smiles and smirks computed using the volatility implied 

by the Black-Scholes model reveal, however, that a simple geometric Brownian motion 

process misses some important features of the data. This limitation is very relevant, 

since empirical evidence suggests that practical financial decision making based on the 

continuous time setting will be satisfactory only if it builds upon reasonable 

specifications of the underlying asset price processes. In other words, the actual 

distribution of the underlying asset implied by the data must be consistent with the 

distribution assumed by the theoretical model. 
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High frequency return data displays excess kurtosis (fat tailed distributions), 

skewness, and volatility clustering. Capturing these essential characteristics with a 

tractable parsimonious parametric model is difficult, but it is widely accepted that 

incorporating stochastic volatility or jumps into continuous time diffusion processes can 

help explain these main statistical characteristics of observed financial returns. 

Unfortunately, existing results for U.S. data have so far been inconclusive or 

contradictory, and most studies fail to produce a satisfactory fit to the underlying asset 

return dynamics. 

Andersen, Benzoni and Lund (2002), Chernov et al. (2003) and Eraker, 

Johannes and Polson (2003), among others, estimate models with stochastic volatility, 

jumps in prices, and in the latter two papers, jumps in volatility. All of them find strong 

evidence for stochastic volatility and jumps in prices, but they disagree over the 

presence and importance of jumps in volatility, and over the convenience to allow for 

state-dependent arrival of jumps. The available evidence for U.S. data consistently find 

that allowing for jumps in returns helps matching the observed distribution of returns 

with relatively smooth volatility. If the process does not allow for jumps, then 

replication of sample kurtosis requires a higher volatility of the stochastic variance 

process, to compensate for the absence of jumps. In addition to its kurtosis, the jump-

diffusion process allows for two sources of skewness: a nonzero (usually negative) 

mean jump and the negative correlation between the shocks in returns and volatility. 

Both features help the model to match the negative skewness observed in sample 

moments. However, it should be pointed out that stochastic volatility is also important. 

If we do not allow for stochastic volatility, the estimated frequency of jumps is 

extraordinarily large, to compensate for the misspecification in the variance process. 
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There is also disagreement regarding the correct specification of the underlying 

security process among studies that use option prices instead of time series of returns. 

Here, the specification is evaluated by fitting option prices, as opposed to fitting the 

conditional distribution of the return time series. Bakshi, Cao and Chen (1997) find that 

both stochastic volatility and jumps in prices are important for pricing options although 

stochastic volatility seems to be enough to design efficient hedging positions in options. 

On the other hand, Bates (2000), Eraker (2004) and Pan (2002) conclude that jumps in 

returns are economically small, even with negligible benefits for the pricing of options. 

A problem with these studies is not only the use of a very different sample period, but 

also the different estimation methods. More recently, Broadie, Chernov and Johannes 

(2007) avoid these critiques and, using a long period of option prices, argue that the 

evidence favours an economically and statistically significant jump risk premia in 

returns, showing how important are these premia for S&P 500 futures option prices. 

The goal of this paper is to identify a diffusion stochastic volatility model with 

possible jumps in returns that might be successful in approximating the S&P 500 return 

dynamics as well as some European indices: DAX 30, IBEX 35 and CAC 40. Such 

model should constitute an adequate basis for continuous time asset pricing applications 

and therefore, we analyze whether the estimates can reproduce important aspects of the 

distribution of returns like third and fourth order moments. It is surprising the lack of 

evidence available regarding the behaviour of continuous-time models for European 

return indices, which is obviously important for asset allocation or for pricing 

derivatives. This paper fills that gap. 

Until recently, a major obstacle for testing continuous-time models of equity 

returns was the lack of feasible techniques for estimating and drawing inference on 

general continuous time models using discrete observations. The main difficulty is that 
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closed form expressions for the discrete transition density generally are not available, 

especially in the presence of unobserved and serially correlated state variables, as it is 

the case in stochastic volatility models. One way to respond to this challenge is the 

Simulated Method of Moments (SMM hereafter) of Duffie and Singleton (1993) that 

matches sample moments with simulated moments computed from a long time series 

obtained from the assumed data generating mechanism, also known as the structural 

model. Together with the Markov Chain Monte Carlo Bayesian estimator (MCMC), the 

SMM method is increasingly used because of their tractability and potential 

econometric efficiency, especially in situations with latent variables or under complex 

specifications of the jump component.  

We adopt a variant of the SMM known as the Efficient Method of Moments 

(EMM hereafter), proposed by Bansal et al. (1993, 1995) and developed by Gallant and 

Tauchen (1996). EMM is a simulation based moment matching procedure with certain 

advantages. The moments to be matched are the scores of an auxiliary model called the 

score generator. As shown by Tauchen (1997) and Gallant and Long (1997), if the score 

generator is able to approximate the probability distribution of return data reasonably 

well, then estimates of the parameters of the structural model are as efficient as 

maximum likelihood estimates.  

We find that adding jumps in returns to the stochastic volatility diffusion is 

needed to explain the statistical characteristics of the return time series. We reject the 

pure diffusion model with stochastic volatility for all four stock market indices. 

However, the overall fit of the model improves significantly when we add jumps in 

returns. In fact, we are not able to reject the jump-diffusion model with stochastic 

volatility for the S&P 500, the IBEX 35 and the DAX 30 at 5% significance, rejecting it 

for the CAC 40, which has a p-value of 0.023. Hence, we would not reject the model for 



 5

either index at 1% significance. Additionally, under the pure stochastic volatility model, 

the implied skewness is notoriously higher in absolute value than the sample third 

moment, except for the U.S. market where sample and model skewness are close to 

each other. On the other hand, the kurtosis generated by the estimated model falls in all 

cases well below the sample kurtosis. To allow for volatility of variance does not seem 

to be enough to capture the high levels of kurtosis observed in the sample, which may 

explain the systematic rejection of this specification for the four indices. Regarding the 

model with jumps in equity returns, the negative skewness produced by the model is 

again higher in absolute value than the sample skewness. However, jumps in equity 

returns help replicating extraordinary well the observed kurtosis in data in the case of 

European markets, which may explain the overall satisfactory fit of the jumps in returns 

specification. We may therefore conclude that the stochastic volatility model with 

jumps in returns replicates much more precisely sample kurtosis than the negative 

skewness observed in the data.  

The paper is organized as follows. Section two presents the continuous time 

models for stock returns. Section three describes the data employed in the paper, while 

section four documents the details of the EMM methodology. Empirical results are 

given in section five. Finally, section six contains the concluding remarks. 

2 Model Specification 

2.1 Stochastic Volatility (SV) Model 
A natural extension of the diffusion models widely applied in the asset pricing literature 

incorporates stochastic volatility to accommodate the clusters of volatility usually 

observed in stock market returns.1 This feature can explain broad general characteristics 

of actual return data, such as leptokurtosis and persistent volatility, and it is potentially 

                                                 
1 Stochastic volatility models are initially suggested by Clark (1973), Tauchen and Pitts (1983), and 
Taylor (1986).  
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useful in pricing derivatives. Hull and White (1987), Melino and Turnbull (1990), and 

Wiggins (1987) generalize the traditional geometric Brownian motion specification 

underlying the Black-Scholes expression by allowing for stochastic volatility to price 

equity and currency options. In a key contribution to literature, Heston (1993) allows for 

correlation between the Brownian motions in the mean and the variance equations, 

obtaining closed form expressions for option valuation using the Fourier inverse 

transform of the conditional characteristic function. In particular, Heston (1993) allows 

for a volatility risk premium that is proportional to the square root of the stochastic 

variance. This is the specification we employ in this research. 

Let tS  be the price at t  of a stock market index, with tt Ss ln= . The square root 

stochastic volatility model (SV) is given by, 

tt
t

t dWVdtVds ,12
+⎟

⎠
⎞

⎜
⎝
⎛ −= μ  (1)

where the variance V  follows a diffusion process with mean reversion in levels: 

( ) tttt dWVηdtVβαdV ,2+−=  (2)

with 1W , 2W  being correlated standard Brownian motions, ( )1, 2,,t tcorr dW dW dtρ= .  

Stochastic volatility induces an excess of kurtosis through the values of α , β  

and η . The parameter β  measures the speed at which the process reverts to the long-

term variance ( βα ), and it captures the persistence in variance. If the variance is 

highly volatile, i.e., if η  is large, the probability of observing large shocks in returns 

will increase, and the tails of the distribution will be thicker. The asymmetry usually 

observed in returns can be captured through a negative correlation between shocks in 

variance and in returns, <ρ 0. That way, volatility will increase when prices go down, 

thereby increasing the likelihood of large negative returns. 
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We obtain the first-order Euler discretization of our structural continuous-time 

diffusion process,  

                                 Δ−Δ−
Δ−

Δ− Δ+Δ⎟
⎠
⎞

⎜
⎝
⎛ −+= tt

t
tt zVVss ,12

μ ,                                        (3) 

together with either: 
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This discrete-time representation will provide us with simulated time series for returns 

that will be used to estimate the parameter vector with a better match to the score vector 

of an auxiliary model fitted to the data, 

 

2.2 Stochastic Volatility Model with Jumps (SVJ)  
It has recently become evident that success in fitting the dynamics of conditional 

volatility does not guarantee a good fit of the high conditional kurtosis in returns that is 

observed in many financial assets.2 

We therefore add a jump component to the previous specification, 

( ) tttt
t

tt dqkdWVdtVkλμds +++⎟
⎠
⎞

⎜
⎝
⎛ −−= 1ln

2 ,1  (6)

where the variance process V  follows a mean-reverting diffusion as (2). We denote by 

tq  a Poisson process, uncorrelated with 1W  and 2W , with a jump intensity tλ , so that 

( )Pr 1t tdq dtλ= = , and we assume a constant jump intensity, 0tλ λ= . The size of a 

jump at time t, if it occurs, is denoted by tk . 

                                                 
2 See Singleton (2006) for a review of the literature. 
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We assume that the size of the jump process follows a Normal distribution: 

( ) ( )2 2ln 1 ln(1 ) 0.5 ,tk N k δ δ+ ≈ + − . Finally, k  is the average size of a jump, so that the 

average growth rate due to jumps is t kλ . The correction t kdtλ  in the drift compensates 

the non-zero mean of the jump component. A negative (positive) value of k  implies 

negative (positive) asymmetry. Hence, the stochastic volatility model with jumps has 

two sources of asymmetry, the average size of jumps, k , and a possible negative 

correlation between the two Brownian motions. Nevertheless, as a first approximation, 

and following Andersen, Benzoni and Lund (2002), we impose the restriction 0=k  in 

the estimation, since this is generally a poorly identified parameter. Even though we 

lose the contribution of k  to a negative skewness, imposing 0=k  leads to a mean jump 

size of 25.0 δ− , implying more high negative jumps than positive ones, again 

contributing to negative asymmetry. 

Hence, the model we simulate is:  

                            ( )

ttt

tt

ttttt

ttt
t

tt
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where ( ) ( ) 0,,1,0~...,, ,2,1,2,1 =tttt ξξcorrNdiiξξ . We will start by simulating time series 

data for 1 2, ,t tξ ξ  and for ( )ln 1 tk+  using the Normal distribution we described above. 

From them, we easily get time series realizations for 1 2,t tz z . We start the simulations 

from an initial price: 0 100S = , and stochastic volatility tV  equal to its unconditional 

mean 0, /V α β= . Once we have observations for logged prices and volatility for the 10 
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subperiods considered each day, we compute log returns each subperiod Δ−−= ttt ssr , 

and add to them the jump component, whenever it is different from zero.  

The jump component is obtained as: 

                                 ( )0( (0,1) ).ln 1t tJ I U kλ= < Δ +                                           (8) 

where I denotes an indicator function that takes a value of 1 when the condition in 

brackets holds, and it is equal to zero otherwise. Jumps are added to each return when 

they happen to materialize. In principle, it is possible that more than one jump occurs in 

a single day, although the probability of such event is very small. Finally, we aggregate 

log returns over each market day. 

3 Data 
We have daily from January 3, 1988 to December 30, 2010, with 5799 sample 

observations data for S&P 500, 5915 observations for DAX 30, 5764 for IBEX 35 and 

5806 observations for CAC 40. Table 1 shows the sample mean, standard deviation, 

asymmetry, kurtosis, and minimum and maximum values for the daily return series (log 

returns in percentage form), as well as the augmented Dickey-Fuller statistic (ADF) for 

the stock market index and for the returns on the index. The ADF statistic suggests that 

returns are stationary, and they are shown in Figure 1. Index returns display important 

kurtosis and negative asymmetry, so the data generating process must be able to 

produce these same statistical characteristics in simulated returns. 

4 EMM Estimation Methodology 
We start by computing the quasi-maximum likelihood (QML) estimate of the 

parameters in the conditional density of index returns, which is approximated by a semi-

nonparametric (SNP) density function.3 The approximation considers an auxiliary 

                                                 
3 Gallant and Long (1997) show that among discrete time models, SNP densities, proposed by Gallant and 
Tauchen (1989), provide such an approximation. The estimated SNP density is also a consistent estimator 
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model made up by a constant plus a MA(1) innovation for the conditional mean, and a 

GARCH(1,1) representation for the conditional variance for the residuals from the 

previous estimation. As in Andersen, Benzoni and Lund (2002), we start by prefiltering 

the return data series, ts~ , using a simple MA(1) model, 110
~

−−+= ttts εθεθ , and 

rescaling the residuals, so that ( ) ( ) ( )
( )t

tt
ttt stdev

EsstdevsEr
ε
εε
ˆ
ˆˆ~~~ −

+= , to match the sample 

mean and variance in the original data set. This residual series tr~  is then treated as the 

observed return process, to which we fit a GARCH(1,1) model. We also include a 

number of Hermite polynomials in the SNP model to make up the non-parametric term 

in the approximation to the density function in order to adapt to all non-Gaussian 

features of the process.  

The election of model is not arbitrary. There is almost no serial correlation 

structure in daily returns, and it can be appropriately captured by an MA term. An 

alternative would be to consider a long-memory process, given the evidence that has 

recently been provided in the literature in that respect. In our simple treatment of 

returns, we start by estimating the MA term to fit a GARCH structure for the 

conditional variance of the series of residuals from that estimation. Proceeding this way, 

we can focus just on the variance dynamics.   

The SNP density Kf  takes the form 

( ) ( ) ( )[ ]
( )[ ] ( )

( )
t

t

R tK

ttK
ttK h

zφ
duuφxuP

xzP
ννξxrf

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+=

∫ 2

2

,
,

1;|

 

(9)

where ( ) ∞== −− ,...,1,,...,, 1 trrxr Ltttt  are the random variables corresponding to the index 

return process and lags of those returns, ( )⋅φ  denotes the standard normal density, ν  is a 

                                                                                                                                               
(Gallant and Nychka 1987), efficient (Fenton and Gallant 1996a; Gallant and Long 1997) and with 
desirable qualitative features (Fenton and Gallant 1996b). 
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small constant (0.01)4, 
t

tt
t h

υrz −
=  is the standardized process of daily returns, which is 

supposed to be i.i.d., and tυ  and th  are the conditional mean and variance of the 

auxiliary model, which are given by 

)1,1(~

0

11
2

110 GARCHhrh ttt

t

−− ++=

=

ϑγγ

υ

 
(10)

and the polynomial: 

( ) ( ) ∑ ∑∑
= ==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

z xz K

i

i
K

j

j
ij

K

i

i
iK azxazxaxzP

0
00

00

1,,
 

(11)

is a zK -th order polynomial in z , whose coefficients are represented by a polynomial 

of degree xK  in x . The condition 00a  = 1 is imposed for identification purposes (in 

order to obtain a unique representation). Specifically, we employ polynomials that are 

of Hermite form and we fix xK  equal to zero, which induces a time-homogeneous non-

Gaussian error structure, letting 0>zK . So that the polynomial becomes 

( ) ( ) 1,, 0
0

== ∑
=

azHeaxzP
zK

i
iiK  (12)

and ( )zHei  is the orthogonal Hermite polynomial of degree i. 

With this normalization, the Kf  density is interpreted as an expansion whose 

leading term is the Normal density ( )⋅φ , while higher order terms adapt to minor 

deviations from the Normal. In fact, the main task of the nonparametric polynomial 

expansion in the conditional density is to capture any excess kurtosis in the return 

process and any asymmetry which has not already been accommodated by the leading 

term. 

                                                 
4 This constant ν  is used to avoid numerical problems during EMM estimation, guaranteeing ( )ttK xzP ,  
not to be zero.   
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The parameters ( )
zKaaa ,,,,,, 21110 …ϑγγξ =  of the auxiliary model are estimated 

by QML by solving the problem: 

( )[ ]∑
=

=
n

t
ttKξ
ξxrf

n
ξ

1

;~|~ln1maxarg~  (13)

where ( ) ntrrxr Ltttt ,...,1,~,,~~,~
1 == −− …  are the observed data, and n  denotes the sample 

size.  

The second step of the estimation procedure consists of estimating the 

parameters of the structural model. We search for a parameter vector that allows the 

assumed diffusion to capture the main statistical characteristics in the data. This 

possibility is measured through the expected value of the QML gradient, 

( ) ( )
( )ψ

ξ

ξ
ξψ ;

~;ln~, xrdP
xrf

m
K

∫ ∂

∂
= . For this, we use the sample moment,  

( )
( ) ( )( )

1

ˆ ˆln ;1,
N K t t

N
t

f r x
m

N

ψ ψ ξ
ψ ξ

ξ=

∂
=

∂∑
�

�     (14) 

Here, a GMM estimation technique is used, minimizing a quadratic form made 

up with the mathematical expectation of the elements of the gradient of the likelihood 

function, and an appropriate weighting matrix. Minimization of the quadratic form 

needs to be implemented by simulation, since it is not feasible to compute the analytical 

expression for the gradient of the likelihood under the structural model. Let 

( ) ( ){ }N
ttt ψxψr 1ˆ,ˆ =  denote a sample simulated from the structural model using the 

parameter vector ψ . The EMM estimator of ψ  is then defined by 

( ) ( )' 1ˆ arg min , ,N Nm I m
ψ

ψ ψ ξ ψ ξ−⎡ ⎤= ⎢ ⎥⎣ ⎦
� ��  (15)

where, as explained above, ( ),Nm ψ ξ�  is the expectation of the score function of the 

auxiliary model, evaluated by Monte Carlo integration at the quasi-maximum likelihood 
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estimate of the parameter vector ξ~  in the auxiliary model, and the weighting matrix 

1~ −I  is a consistent estimate of the asymptotic covariance matrix of the density Kf , 

which is estimated from the outer product of the gradient: 

( ) ( )
∑

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂

∂

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂

∂
=

n

t

ttKttK

ξ

ξxrf

ξ

ξxrf

n
I

1

'~;~~ln~;~~ln1~

 

(16)

Therefore, this approach is similar in some aspects to the Simulated Method of 

Moments (SMM) of Duffie and Singleton (1993). The expectation of the score function 

for the auxiliary model provides the moment conditions for the Simulated Method of 

Moment estimation of the continuous time structural model.  

We use 10, 1/10M = Δ = , == 21 NN  1000 and =N  10000.5 N  must be large 

enough so that the Monte Carlo simulation error in the gradient of the log likelihood can 

be considered to be negligible. The problem is that we would literally need millions of 

observations so that the error is insignificant as discussed by Andersen and Lund, 1997. 

We also use the variance reduction technique of antithetic variables suggested by 

Geweke, 1996, which is quite effective as shown, among others, by Andersen and Lund, 

(1997). The idea is to average two estimations of the integral 

( ) ( )
( )ψ

ξ

ξ
ξψ ;

~;ln~, xrdP
xrf

m
K

∫ ∂

∂
=  which are supposed to be negatively correlated. We 

first compute the gradient of the likelihood using random variables ( )tt zz ,2,1 , , 

( )( )ξψ ~,21 , tt zz
Nm . The second estimation, ( ) ( )ξψ ~,21 , tt zz

Nm −− , is computed using the same 

random numbers with the opposite sign: ( )tt zz ,2,1 ,−− . Finally, 

                                                 
5 The Euler approximation with =M  1 is frequently used to estimate parameters in stochastic differential 
equations from discrete observed data. To estimate by simulation, a value >M  1 is needed to reduce the 
discretization bias (Kloeden and Platen, 1992). An open question would be to examine the behavior of 
estimates as the number of subperiods per day, M, increases. 
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( ) ( ) ( ) ( ) ( )[ ]ξψmξψmξψm tttt zz
N

zz
NN

~,~,
2
1~, 2121 ,, −−+= . The use of antithetic realizations also 

helps reducing the discretization bias.  

Hence, in simulating the return sequence ( ){ }N
tt ψr 1ˆ = , two antithetic samples of 

( ) ( ) 10001010001000012 +×+=+×+ NMNN  log-returns are generated using an 

Euler approximation (of order one) from the continuous time model at time intervals of 

101  of a day. We discard the first 1N  simulated values of ts  to eliminate the effect of 

the initial conditions, so that we can think of the time series for ts  as coming from a 

stationary distribution. Then, a sequence of 11000 daily returns is obtained by summing 

the elements of the simulated sample in groups of 10. Again to eliminate the potential 

bias that might be produced by the random number generator, we discard the first 2N  

observations of those returns, to obtain a stationary path of the score ( )ξψmN
~, . In 

estimation, we maintain fixed the realization of the two fundamental ( )1,0N  

innovations. The realizations for ( )tt zz ,2,1 ,  will nevertheless change, because the  

parameter vector is changing in each iteration of the algorithm. 

 
In our choice of auxiliary model, there are 3 parameters in the parametric 

component of the auxiliary model and 6 coefficients in the Hermite polynomials, for a 

total of 9 parameters. On the other hand the structural model has 5 parameters if we do 

not include jumps in returns, and 7 parameters if jumps are considered. Hence, the 

identification condition ( ) ( )ξψ dimdim ≤  holds, and we can proceed to implement the 

global specification test.  

Once we get the estimate of the parameters in the auxiliary model, the 

minimized value of the objective function follows a chi-distribution:  
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( ) ( ) ( )ξψξψξψχ ~,ˆ~,ˆ~~,ˆ 1'2 fnmImn NN ⋅=⋅= −  (17)

where ( )ξψf ~,ˆ  is the numerical value of the objective function at the final estimate and 

we can implement a global specification test by comparing the statistic above with the 

appropriate percentile of a Chi-square distribution with ( ) ( )ψξ dimdim −  degrees of 

freedom, which is 4 or 2, depending on whether we consider the basic stochastic 

volatility model or the specification with jumps in returns. We can also compute t -

ratios for the individual elements of the score, by dividing their estimates by their 

standard errors,  

( )
( )Sdiag
ξψm

t N
~,ˆˆ =

 
(18)

where ( )( )'~'~1 11
ψψψψ MMIMMI

n
S −−−=  and ( )

ψ
ξψmM N

ψ ∂
∂

=
~,ˆ , that must be computed 

by numerical differentiation. Individual significance tests for these components can 

throw some light on the appropriateness of the auxiliary ability of the model to capture 

the main statistical features of the structural model, or some features of the data that the 

model cannot approximate. 

5 Empirical Results 
For each stock market index, we start by estimating the symmetric GARCH(1,1) 

auxiliary model, with parameter estimates and the corresponding standard errors shown 

in Table 2. We present estimates for the pure GARCH(1,1) model as well as for the 

SNP specification. As expected, volatility displays high persistence in the four indices, 

and the long term GARCH volatility is close to the sample standard deviation, reflecting 
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the fact that the model specification allows for almost no predictability of daily returns.6 

By and large, estimated parameters in the SNP density are statistically significant. 

Once we have numerical estimates for the auxiliary model, we can proceed to 

estimating the parameters in the two structural models, SV and SVJ. Table 3 displays 

results in daily percent terms for each index and each structural model. Panel A shows 

parameter values and the minimized value of the objective function, together with the 

corresponding Chi-square statistic, while Panel B shows values for the t -ratios for the 

score vector, together with their p-values. Panel C compare sample moments to those 

obtained from the simulated time series from the estimated structural model.  

Most parameter estimates are statistically significant for the models fitted to 

DAX 30 and CAC 40 returns, while the opposite is the case for S&P 500 and IBEX 35. 

By comparing estimated standard deviations for the former and the latter indices, we 

can see that it is a problem of loss precision, i.e., high standard deviations in estimating 

the models for S&P 500 and IBEX 35. It is particularly encouraging that the estimates 

of the two parameters characterizing the structure of jumps, δ and 0λ , are significant in 

most cases. And the same is true for the parameter η that characterizes the volatility of 

the latent variance process. The main identification problem has to do with the 

correlation parameter, which is consistently estimated as negative, but with very low 

precision, as indicated by the large standard deviation. Even relatively large changes in 

the value of ρ  would not affect the objective function substantially. The negative sign 

of the correlation parameter ρ , allows for capturing the observed asymmetry in the 

return process.  

The specification with no jumps in returns is rejected for the four indices at 

standard significance levels. As shown in Panel C, the SV model does not do a good job 
                                                 
6 The 0γ and 1γ  parameters of the variance equation add up to more than one in the SNP estimates, but the 
unconditional variance in that model is no longer determined by the value of these two parameters. 
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in replicating the sample asymmetry and kurtosis statistics. The kurtosis is in the four 

indices not too far above 3. 

After incorporating jumps in returns, the objective function reduces considerably 

for all indices. The reduction is of 45% for the S&P 500, 34% for DAX 30, 72% for 

IBEX 35 and 31% for CAC 40. As a consequence, the Chi-square statistic drops well 

below its value in the SV model. Now, at the 1% significance level, the model is not 

rejected for any of the four indices, and at 5% significance, it would be rejected just for 

CAC 40.  

Of particular interest is the jump component. The estimation of 0λ  is 

significantly lower for S&P 500 than for the European indices. Estimated values imply 

an average of about 3 jumps per year for S&P 500 against 5, 10 and 6 jumps per year 

for DAX 30, IBEX 35 and CAC 40, respectively. Jumps are estimated to be less 

frequent in USA (lower 0λ ), despite the larger sample kurtosis reported for the U.S. 

data. The estimated average jump size, −0.5 2δ̂ , is −3.59% for S&P 500, −4.15% for 

DAX 30, −3.92% for IBEX 35, and −4.38% for CAC 40.  

Incorporating jumps greatly improves the ability of the model to reproduce the 

levels of kurtosis observed in actual European return data. Simulated kurtosis in pseudo-

daily returns increases from 3.7 to 5.6 for the S&P 500 when including jumps in returns, 

from 4.5 to 8.6 for DAX 30, from 4.6 to 9.6 for IBEX 35, and from 4.7 to 8.0 for CAC 

40. On the other hand, the skewness of actual data is poorly explained by both 

specifications.  

A systematic result is that the range of returns implied by estimated models is 

shifted to the left, relative to actual data, as indicated by the minimum and maximum 

returns in the simulated time series for the four indices. That is, both the minimum and 
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the maximum returns are lower than those in the data.7 This comes about because of 

having jumps in returns as a mechanism to produce thick tails.  

We can attain the same level of kurtosis as in the data, together with negative 

skewness, because of the predominance of negative jumps in the simulated time series 

of returns. The level of volatility falls short in the simulated series relative to actual 

data, while the level of negative skewness is higher in simulated returns than in actual 

returns. These three observations on sample moments are consistent with each other, 

reflecting that we achieve increased volatility from the jumps, but not from thick tails in 

the distribution of returns.  

Even though jumps in returns under stochastic volatility help to explain the high 

levels of kurtosis observed in actual return data, some other relevant characteristics of 

the data remain unexplained. This suggests that some additional model features might 

be needed. An already tested candidate with U.S. data is jumps in volatility. This is 

tested with mixed results by Broadie, Chernov and Johannes (2007) and Eraker, 

Johannes and Polson (2003). A second, and probably more useful extension given 

difficulty in replicating the negative skewness in the sample, is to allow for state-

dependent correlation between the innovations in the return and volatility equations. If, 

for example, the negative variance risk premium reported in the literature is indeed a 

premium on correlation as suggested by Driessen, Maenhout and Vilkov (2009), then 

we might want to allow for the correlation between the two innovations to depend upon 

the variance risk premium.  

Finally, it should be pointed out that the estimation algorithm seems to work 

well for all the indices, as reflected in the fact that the p-values for the t -ratios of the 

components of the score vector depart from zero in the model with jumps in returns, 

                                                 
7 With the only exception of the minimum return for the S&P 500 index. 
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with no statistical significance that could suggest some pattern of misspecification in 

any direction, in spite of the limitations we have pointed out throughout the paper. 

We also estimated the structural model adding to the objective function penalty 

terms capturing the inability of the model to reproduce higher order moments of sample 

returns. Specifically, we added to the objective function in (15), three terms defined as 

10-4 times the squared difference between the sample and simulated variance, skewness 

and kurtosis of index returns. We can then obtain numerical values for the parameters in 

the structural model that fit well variance, skewness and kurtosis, but the numerical 

value of the quadratic form ( ) ( )' 1, ,N Nm I mψ ξ ψ ξ−� ��  deteriorates drastically, suggesting 

that the SNP density incorporates characteristics of the density of returns that cannot be 

reasonably fitted when using ‘brute force’ to fit the three higher order moments. 

 

6 Conclusions 
It is widely accepted that incorporating stochastic volatility or jumps to continuous time 

diffusion processes can help explaining the main statistical characteristics of observed 

stock market index returns. Unfortunately, existing results for U.S. data are 

contradictory and fail to satisfactorily approximate the dynamics of the underlying 

return process. We attempt to identify a model that adequately fits the dynamics of 

returns over the January 1988 to December 2010 period, and extend the analysis to 

European indices: DAX 30, IBEX 35 and CAC 40.  

We incorporate a Poisson process with constant intensity to a stochastic 

volatility diffusion process for returns, and perform EMM estimation, where a simple 

GARCH(1,1) auxiliary model is taken into account. We start by showing that the 

standard stochastic volatility is unable to explain the higher order moments of the 

sample distribution of stock market index returns. After that, we find that adding jumps 
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in returns to the stochastic volatility diffusion can help explaining some of the statistical 

characteristics of return data series. Specifically, with such a model, we are able to 

replicate the degree of kurtosis observed in the European stock market indices 

considered. Adding jumps in returns drastically improves the fit, and the model is no 

longer rejected at the 1% significance level for any of the four indices. However, the 

model overestimates the degree of asymmetry and underestimates volatility, relative to 

sample moments. Hence, additional features are needed to improve the fit. Allowing for 

a state dependent correlation between the two Brownian motions in the model is our 

candidate to advance along this line in future research. 
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Table 1. S&P 500, DAX 30, IBEX 35 and CAC 40 daily Rates of Return.  
 
In all figures and tables, returns are expressed on a daily basis, in percentage form, from January 4, 1988 
to December 30, 2010. Panel A: Sample descriptive statistics for daily rates of return on the S&P 500, 
DAX 30, IBEX 35 and CAC 40. Panel B: Augmented Dickey Fuller (ADF) test for the presence of a unit 
root. The test is based on the regression: 

t
j

jtjtt εsτsθtςωs +Δ+++=Δ ∑
=

−−

12

1
1  

 
 

Panel A: Sample Descriptive Statistics 
  S&P 500  DAX 30  IBEX 35  CAC 40 

Mean 0.0275 
 

0.0246 
 

0.0292 
 

0.0233 

Standard Deviation 
 

1.1535 
 

1.4385 
 

1.3353 
 

1.3880 

Asymmetry 
 

-0.2638 
 

-0.2433 
 

-0.1635 
 

-0.0346 

Kurtosis 
 

12.0352 
 

9.4817 
 

8.1412 
 

7.9109 
 
Minimum -9.4695 -13.7074 -9.5859 -9.4715 
 
Maximum 10.9572 10.7974 10.1176 10.5946 
     
     
     

Panel B: Augmented Dickey Fuller Test 
ADF (p-value)  S&P 500  DAX 30  IBEX 35  CAC 40 
Stock market index -1.35 (0.61) -1.63 (0.46) -1.03 (0.74) -1.79 (0.38) 
Returns -58.99 (0.00) -77.51 (0.00) -75.10 (0.00) -47.64 (0.00) 
     
For our sample size, critical values at 5% and 1% significance levels are -2.86 and -3.43, 
respectively. 
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Table 2. SNP Model Estimates. 
 
The reported results are expressed in percentage form. They are obtained from daily returns, filtered using 

a MA(1). The SNP model is: ( ) ( ) ( )[ ]
( )[ ] ( )
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Standard errors are given in parenthesis, except for the long-term variance 
11

0

1 ϑγ
γ

−−
, where we show in 

brackets the long-term GARCH standard deviation. 
 

 

 
GARCH(1,1) Model Estimates 

 

Parameter S&P 500 DAX 30 IBEX 35 CAC 40 
0γ  0.0079 

(0.0010) 
0.0389 

(0.0029) 
0.0279 

(0.0024) 
0.0307 

(0.0032) 
1γ  0.0552 

(0.0034) 
0.0989 

(0.0039) 
0.0871 

(0.0053) 
0.0904 

(0.0059) 
1ϑ  0.9380 

(0.0039) 
0.8827 

(0.0056) 
0.8959 

(0.0063) 
0.8936 

(0.0066) 

11

0

1 ϑγ
γ

−−
 1.162 

(1.077) 
2.114 

(1.454) 
1.641 

(1.281) 
1.919 

(1.385) 
 

 

 
SNP Model Estimates 

 

Parameter S&P 500 DAX 30 IBEX 35 CAC 40 
0γ  0.0127 

(0.0018) 
0.0544 

(0.0077) 
0.0429 

(0.0058) 
0.0577 

(0.0091) 
1γ  0.0800 

(0.0074) 
0.2056 

(0.0136) 
0.1558 

(0.0100) 
0.1870 

(0.0177) 
1ϑ  0.9555 

(0.0038) 
0.8908 

(0.0082) 
0.9150 

(0.0057) 
0.8895 

(0.0093) 
a1 -0.0064 

(0.0066) 
0.0022 

(0.0068) 
0.0005 

(0.0071) 
0.0023 

(0.0068) 
a2 -0.2426 

(0.0122) 
-0.2509 
(0.0098) 

-0.2487 
(0.0124) 

-0.2203 
(0.0141) 

a3 -0.0220 
(0.0071) 

-0.0307 
(0.0067) 

-0.0422 
(0.0070) 

-0.0202 
(0.0067) 

a4 0.1227 
(0.0082) 

0.1022 
(0.0088) 

0.1339 
(0.0090) 

0.0970 
(0.0074) 

a5 -0.0036 
(0.0078) 

0.0138 
(0.0073) 

0.0012 
(0.0046) 

0.0255 
(0.0062) 

a6 -0.0559 
(0.0081) 

-0.0893 
(0.0085) 

-0.0657 
(0.0080) 

-0.0536 
(0.0088) 
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Table 3. EMM Results of the Stochastic Volatility Model (SV) and Stochastic Volatility 
Model with Jumps in Returns (SVJ). 
 
Panel A: EMM estimates: Estimates are expressed in percentage form on a daily basis. The rates of return 
of the S&P 500, DAX 30, IBEX 35 and CAC 40, correspond to the sample period from January 4, 1988 
to December 30, 2010. Returns of the stock market indices have 5799, 5915, 5764 and 5806 observations 
respectively. The estimates refer to the following models:  

SV: tt
t

t dWVdtVμds ,12
+⎟

⎠

⎞
⎜
⎝

⎛ −= , ( ) tttt dWVηdtVβαdV ,2+−=   

SVJ: ( ) tttt
t

tt dqkdWVdtVkλμds +++⎟
⎠
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⎜
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( ) ( )22 ,5.0)1ln()(1ln δδkNtk −+≈+ , 0=k , ( ) dtρdWdW tt =,2,1 ,cov , ( ) ( )dttλdqt ==1Pr , ( ) 0λtλ = . 
 

 
 

 
 

EMM Estimates for the Structural Model  
January 4, 1988-December 30, 2010 
(Standard deviations in brackets) 

 

 S&P500 DAX 30 IBEX 35 CAC 40 
Parameters SV SVJ SV SVJ SV SVJ SV SVJ 

μ  0.0287 
(0.0085) 

0.0304 
(0.0033) 

0.0458 
(0.0041)

0.0492 
(0.0048)

0.0437 
(0.0040)

0.0473 
(0.0056)

0.0511 
(0.0030) 

0.0558 
(0.0048)

α  0.1214 
(0.0853) 

0.0153 
(0.0162) 

0.0267 
(0.0086)

0.0209 
(0.0065)

0.0148 
(0.0042)

0.0218 
(0.0212)

0.0245 
(0.0062) 

0.0233 
(0.0085)

β  0.2134 
(0.1510) 

0.0242 
(0.0257) 

0.0285 
(0.0112)

0.0201 
(0.0060)

0.0170 
(0.0057)

0.0233 
(0.0265)

0.0224 
(0.0070) 

0.0191 
(0.0068)

η  0.1813 
(0.0760) 

0.0745 
(0.0320) 

0.1427 
(0.0021)

0.1312 
(0.0418)

0.1023 
(0.0200)

0.1148 
(0.0276)

0.1400 
(0.0206) 

0.1393 
(0.0262)

ρ  -0.0971 
(0.2542) 

-0.2703 
(0.4167) 

-0.1167 
(0.3716)

-0.0114 
(0.7936)

-0.2423 
(0.6448)

-0.2056 
(0.9473)

-0.1552 
(0.3939) 

-0.0155 
(0.4271)

δ   2.6877 
(0.1506) 

 2.8807 
(0.1823)

 2.7963 
(0.0702)

 2.9640 
(0.1057)

100 0λ   0.1186 
(0.1421) 

 0.2036 
(0.0812)

 0.3865 
(0.0907)

 0.2260 
(0.0807)

100 f  0.1956 0.1080 0.2341 0.1551 0.2333 0.0677 0.2837 0.1945 
n 5799 5915 5764 5806 

2χ  
(p-value) 

11.34 
(0.003) 

6.27 
(0.180) 

13.85 
(0.001) 

9.18 
(0.056) 

13.45 
(0.001) 

3.90 
(0.419) 

16.47 
(0.000) 

11.29 
(0.023) 



26 
 

Panel B: EMM Diagnosis: t -ratios of the elements of the score vector, which are given by ( )
( )Sdiag
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t -ratios for the elements of the score vector 
(p-values in brackets) 

Sample: January 4, 1988-December 30, 2010 
 

  S&P 500 DAX 30 IBEX 35 CAC 40 
Parameter SV SVJ SV SVJ SV SVJ SV SVJ 

0γ  -0.285 0.281 -1.937 -0.236 -1.365 1.689 -3.455 6.307 
 (0.79) (0.81) (0.25) (0.84) (0.24) (0.23) (0.03) (0.98) 
1γ  -0.546 -1.271 -3.035 -2.493 -1.288 -1.712 -4.069 -7.110 
 (0.61) (0.33) (0.73) (0.13) (0.27) (0.23) (0.02) (0.64) 
1ϑ  -0.556 -1.867 -2.695 -1.445 -1.521 -2.455 -3.578 -6.775 
 (0.61) (0.20) (0.56) (0.13) (0.20) (0.13) (0.02) (0.69) 

a1 1.792 -1.540 2.404 -2.153 1.690 -1.696 7.076 -4.711 
 (0.15) (0.26) (0.02) (0.16) (0.17) (0.23) (0.00) (0.15) 

a2 -3.265 -4.686 -4.282 -4.880 -2.997 -57.657 -3.681 -4.456 
 (0.03) (0.04) (0.23) (0.04) (0.04) (0.00) (0.02) (0.45) 

a3 0.321 0.377 0.720 -0.442 0.394 0.285 -3.264 0.496 
 (0.76) (0.74) (0.47) (0.70) (0.71) (0.80) (0.03) (0.83) 

a4 -0.666 -7.125 -2.159 -1.149 -0.877 -1.919 0.594 -3.313 
 (0.54) (0.02) (0.57) (0.37) (0.43) (0.19) (0.58) (0.67) 

a5 0.624 6.434 3.624 2.144 0.888 1.386 1.570 4.347 
 (0.57) (0.02) (0.40) (0.17) (0.42) (030) (0.19) (0.63) 

a6 1.163 -0.456 1.064 3.285 0.241 -0.235 0.446 -0.925 
 (0.31) (0.69) (0.12) (0.08) (0.82) (0.84) (0.68) (0.93) 
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Panel C: Basic Statistics from the sample data and the SV/SVJ simulations obtained under the ψ̂  
estimates of the structural model: 

 

 

    Mean Std. Dev. Asymmetry Kurtosis Minimum Maximum
S&P 500 Sample 0.027 1.153 -0.264 12.035 -9.470 10.960 

  SV 0.013 0.758 -0.209 3.460 -3.690 3.100 
  SVJ -0.001 0.816 -0.528 5.570 -7.530 3.570 

DAX 30 Sample 0.025 1.438 -0.243 9.482 -13.710 10.800 
  SV 0.005 1.007 -0.607 4.540 -6.440 4.090 
  SVJ -0.018 1.095 -1.023 8.620 -14.470 4.270 

IBEX 35 Sample 0.029 1.335 -0.163 8.141 -9.580 10.120 
  SV 0.020 0.967 -0.613 4.570 -6.310 4.080 
  SVJ 0.012 1-040 -1.070 9.550 -13.990 4.050 

CAC 40 Sample 0.023 1.388 -0.035 7.911 -9.471 10.595 
  SV -0.016 1.099 -0.690 4.720 -7.410 4.390 
  SVJ -0.042 1.195 -1.021 7.970 -14.980 4.530 
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Figure 1. S&P 500, DAX 30, IBEX 35 and CAC 40 Daily Rate of Return. 
 
All data are expressed on a daily basis percentage form, from January 4, 1988 to December 30, 2010.  
Daily rates of return of the S&P 500 (Panel A), DAX 30 (Panel B), IBEX 35 (Panel C) and CAC 40 
(Panel D), have 5799, 5915, 5764 and 5806 observations respectively.  
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